How the Lean language brings math to coding and coding to math

Uses of the functional programming language include formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

This post is an adaptation of a keynote address that Leo de Moura delivered at the International Conference on Computer Aided Verification (CAV), in July 2024.

LEAN logo.png
The Lean logo.

In 2013, I launched the Lean project with the goal of bridging the gap between automated and interactive theorem provers. Since its inception, Lean has seen unparalleled adoption in the mathematical community, surpassing previous efforts in formalized mathematics. Lean 4, the latest version, is implemented in Lean itself and is also a fully fledged, extensible programming language with robust IDE support, package management, and a thriving ecosystem.

In 2023, Sebasian Ullrich and I founded the Lean Focused Research Organization (FRO), a nonprofit dedicated to advancing Lean and supporting its community. The Lean project embraces a philosophy that promotes decentralized innovation, empowering a diverse community of researchers, developers, and enthusiasts to collaboratively push the boundaries of mathematical practice and software development. In this blog post, we will provide a brief introduction to the project and describe how it is used at AWS.

A brief introduction to Lean

Lean is an open-source, extensible, functional programming language and interactive theorem prover that makes writing correct and maintainable code easy. Lean programming primarily involves defining types and functions, allowing users to focus on the problem domain and its data rather than on coding details. Lean has four primary use cases: formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

Formal mathematics

Lean allows mathematicians to work with advanced mathematical structures using syntax that feels natural to them. The math community recognizes its usefulness: for instance, Fields medalists Peter Scholze and Terence Tao used Lean to confirm their new results; Quanta Magazine has lauded Lean as one of the biggest breakthroughs in mathematics, and it has been featured in numerous popular scientific and academic publications, including the Wired magazine article “The effort to build the mathematical library of the future”. Recently, DeepMind used Lean to build an AI engine that met the silver-medal standard at the International Math Olympiad.

As of July 2024, the Lean Mathematical Library has received contributions from over 300 mathematicians and contains 1.58 million lines of code, surpassing other formal-mathematics systems in use. This remarkable growth has come despite Lean’s concision and youth: it’s at least a decade younger than comparable libraries.

Software and hardware verification

Lean’s combination of formal verification, user interaction, and mathematical rigor makes it invaluable for both software and hardware verification. Lean is a system for programming your proofs and proving your programs. An additional benefit is that Lean produces efficient code, and its extensibility features, originally designed for mathematicians, are also highly convenient for creating abstractions when writing clean and maintainable code. Its benefits extend to any system requiring exceptional accuracy and security, including industries such as aerospace, cryptography, web services, autonomous vehicles, biomedical systems, and medical devices. Later on, we will provide several examples of Lean's applications at AWS.

AI for math and code synthesis

Lean is popular with groups developing AI for mathematics and code synthesis. One of the key reasons is that Lean formal proofs are machine checkable and can be independently audited by external proof checkers. Additionally, Lean's extensibility allows users to peer into the system internals, including data structures for representing proofs and code. This capability is also used to automatically generate animations from Lean proofs.

AI researchers are leveraging large language models (LLMs) to create Lean formal proofs and automatically translate prose into formalized mathematics. OpenAI has released lean-gym, a reinforcement learning environment based on Lean. Harmonic used Lean in the development of its Mathematical Superintelligence Platform (MSI), an AI model designed to guarantee accuracy and avoid hallucinations. Meta AI created an AI model that has solved 10 International Mathematical Olympiad problems, and DeepMind has formalized a theoretical result related to AI safety in Lean. Additionally, LeanDojo is an open-source project using LLMs to automate proof construction in Lean.

Lean's unique combination of machine-checkable proofs, system introspection, and extensibility makes it an ideal tool for advancing AI research in mathematics and code synthesis. The synergy between LLMs and Lean formal proofs is emphasized in Terence Tao's colloquium lecture at the American Mathematical Society, “Machine Assisted Proof”; in the Scientific American article “AI will become mathematicians' co-pilot”; and in the New York Times article “A.I. Is coming for mathematics, too.”

Math and CS education

Millions of people learn mathematics as students and use it throughout their careers. Since its inception, the Lean project has supported students' mathematical-reasoning needs and enabled a more diverse population to contribute to the fields of math and computer science. Numerous educational resources are available for learning Lean, including interactive computer games such as the Natural Number Game, computer science and mathematics textbooks, university courses, and on-demand tutorials. The Lean FRO is committed to expanding Lean’s educational content and envisions a future where children use Lean as a playground for learning mathematics, progressing at their own paces and receiving instantaneous feedback, similar to how many have learned to code.

A quick tour of Lean

Lean combines programming and formal verification. Let's take a quick tour through a small example to see how we write code in Lean and prove properties about that code.

Writing code in Lean

First, let's define a simple function that appends two lists:

def append (xs ys : List a) : List a :=
  match xs with
  | [] => ys
  | x :: xs => x :: append xs ys

This function is defined using pattern matching. For the base case, appending an empty list [] to ys results in ys. The notation x :: xs represents a list with head x and tail xs. For the recursive case, appending x :: xs to ys results in x :: append xs ys. Additionally, the append function is polymorphic, meaning it works with lists of any type a.

Extensible syntax

The notation x :: xs used above is not built into Lean but is defined using the infixr command:

infixr:67 " :: " => List.cons

The infixr command defines a new infix operator x :: xs, denoting List.cons x xs. This command is actually a macro implemented using Lean's hygienic macro system. Lean's extensible syntax allows users to define their own domain-specific languages. For example, Verso, the Lean documentation-authoring system, is implemented in Lean using this mechanism. Verso defines alternative concrete syntaxes that closely resemble Markdown and HTML.

Proving properties about code

Next, we'll prove a property about our append function: that the length of the appended lists is the sum of their lengths.

theorem append_length (xs ys : List a)
        : (append xs ys).length = xs.length + ys.length := by
  induction xs with
  | nil => simp [append]
  | cons x xs ih => simp [append, ih]; omega

Here, theorem introduces a new theorem named append_length. The statement (append xs ys).length = xs.length + ys.length is what we want to prove. The by ... block contains the proof. In this proof,

  • induction xs with initiates a proof by induction on xs;
  • the nil case proves the base case using simp, the Lean simplifier. The parameter append instructs the simplifier to expand append’s definition; and
  • the cons x xs ih case proves the inductive step where ih is the inductive hypothesis. It also uses simp and omega, which complete the proof using arithmetical reasoning.

In this proof, induction, simp, and omega are tactics. Tactics, which transform one state of the proof into another, are key to interactive theorem proving in Lean. Users can inspect the states of their proofs using the Lean InfoView, a panel in the IDE. The InfoView is an interactive object that can be inspected and browsed by the user. In the following picture, we see the state of our proof before the simp tactic at line 10. Note that the proof state contains all hypotheses and the goal (append (x :: xs) ys).length = (x :: xs).length + ys.length, which remains to be proved.

LEAN example.png
The state of the proof before the simp tactic at line 10, as visualized in the Lean InfoView.

How Lean is used at AWS

At AWS, Lean is used in several open-source projects to address complex verification and modeling challenges. These projects not only highlight the practical applications of Lean in different domains but also emphasize AWS's commitment to open-source development and collaboration. We cover four key projects: Cedar, LNSym, and SampCert, whose Lean source code is already available on GitHub, and AILean, which is exploring the relationship between LLMs and formal mathematics and whose code is not open source yet. 

Cedar: an open-source policy language and evaluation engine 

Cedar is an open-source policy language and evaluation engine. Cedar enables developers to express fine-grained permissions as easy-to-understand policies enforced in their applications and to decouple access control from application logic. Cedar supports common authorization models such as role-based access control and attribute-based access control. It is the first policy language built from the ground up to be verified formally using automated reasoning and tested rigorously using differential random testing.

The Cedar project uses Lean to create an executable formal model of each core component of the Cedar runtime (such as the authorization engine) and static-analysis tools (such as the type checker). This model serves as a highly readable specification, allowing the team to prove key correctness properties using Lean.

Lean was chosen for modeling Cedar due to its fast runtime, extensive libraries, IDE support, and small trusted computing base (TCB). The fast runtime enables efficient differential testing of Cedar models. The libraries provide reusable verified data structures and tactics built by the open-source community. Lean’s small TCB allows Cedar to leverage these contributions confidently, as Lean checks their correctness, requiring trust only in Lean’s minimal proof-checking kernel.

LNSym: Symbolic simulation for cryptographic verification

LNSym is a symbolic simulator for Armv8 native-code programs. It’s currently under development, with a focus on enabling automated reasoning of cryptographic machine-code programs. Many cryptographic routines are written in assembly to optimize performance and security on the underlying processor. LNSym aims to reduce the cost of verifying cryptographic routines, particularly block ciphers and secure hashes, ultimately empowering cryptography developers to formally reason about their native-code programs.

LNSym uses Lean as a specification language to model the Arm instruction semantics and cryptographic protocols and as a theorem prover for reasoning about these artifacts. Since Lean programs are executable, the specifications achieve a high degree of trust through thorough conformance testing. Lean orchestrates proofs such that the heavy and often tedious lifting is done automatically, using decision procedures like SAT solvers or custom domain-specific tactics. When proof automation fails, users can employ Lean as an interactive theorem prover. This combination of interactive and automated theorem proving ensures that progress on verification tasks is not hindered by the limitations of proof automation.

SampCert: formally verified differential-privacy primitives

SampCert is an open-source library of formally verified differential-privacy primitives used by the AWS Clean Rooms Differential Privacy service for its fast and sound sampling algorithms. Using Lean, SampCert provides the only verified implementation of the discrete Gaussian sampler and the primitives of zero concentrated differential privacy.

Although SampCert focuses on software, its verification relies heavily on Mathlib, the Lean Mathematical Library. The verification of code addressing practical problems in data privacy depends on the formalization of mathematical concepts from Fourier analysis to number theory and topology.

AILean: AI for math and math for AI

AILean is exploring the relationship between LLMs and formal mathematics in collaboration with the Technology Innovation Institute (TII). This exploration works in both directions: AI for math and math for AI. In AILean, LLMs are used to enhance proof automation and user experience in formal mathematics. LLMs can analyze theorem statements and existing proof steps, suggesting relevant lemmas, definitions, or tactics to guide users in completing proofs. They can also identify common mistakes or inconsistencies, proposing corrections or alternative approaches that avoid dead ends and thereby improving the proof development process.

Takeaways

Lean is a complex system, but its correctness relies only on a small trusted kernel. Moreover, all proofs and definitions can be exported and independently audited and checked. This is a crucial feature for both the mathematical and software verification communities because it eliminates the trust bottleneck. It doesn't matter who you are; if Lean checked your proof, the whole world can build on top of it. This enables large groups of mathematicians who have never met to collaborate and work together. Additionally, it allows users to extend Lean without fearing the introduction of soundness bugs that could compromise the logical consistency of the system.

Lean's extensibility enables customization, which was particularly important during its first ten years, when resources were limited. Lean’s extensibility allowed the community to extend the system without needing to synchronize with its developers. Self-hosting, or implementing Lean in Lean, also ensured that users can access all parts of the system without having to learn a different programming language. This makes it easy and convenient to extend Lean. Packages such as ProofWidgets and SciLean are excellent examples of user-defined extensions that leverage these features.

The FRO model introduced by Convergent Research has been instrumental in supporting Lean and helping it transition to a self-sufficient foundation. The Lean project has grown significantly, and driving it forward would have been difficult without Convergent Research’s efforts to secure philanthropic support. Just as foundations like the Rust and Linux Foundations are vital for the success and sustainability of open-source projects, the support of Convergent Research has been critical for Lean's ongoing progress.

To learn more about Lean, visit the website.

Research areas

Related content

US, MA, Boston
As part of Alexa CAS team, our mission is to provide scalable and reliable evaluation of the state-of-the-art Conversational AI. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), to invent and build end-to-end evaluation of how customers perceive state-of-the-art context-aware conversational AI assistants. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel methods for evaluating conversational assistants. You will analyze and understand user experiences by leveraging Amazon’s heterogeneous data sources and build evaluation models using machine learning methods. Key job responsibilities - Design, build, test and release predictive ML models using LLMs - Ensure data quality throughout all stages of acquisition and processing, including such areas as data sourcing/collection, ground truth generation, normalization, and transformation. - Collaborate with colleagues from science, engineering and business backgrounds. - Present proposals and results to partner teams in a clear manner backed by data and coupled with actionable conclusions - Work with engineers to develop efficient data querying and inference infrastructure for both offline and online use cases About the team Central Analytics and Research Science (CARS) is an analytics, software, and science team within Amazon's Conversational Assistant Services (CAS) organization. Our mission is to provide an end-to-end understanding of how customers perceive the assistants they interact with – from the metrics themselves to software applications to deep dive on those metrics – allowing assistant developers to improve their services. Learn more about Amazon’s approach to customer-obsessed science on the Amazon Science website, which features the latest news and research from scientists across the company. For the latest updates, subscribe to the monthly newsletter, and follow the @AmazonScience handle and #AmazonScience hashtag on LinkedIn, Twitter, Facebook, Instagram, and YouTube.
US, WA, Seattle
AWS Industry Products (IP) is a new AWS engineering organization chartered to build new AWS products by applying Amazon’s innovation mechanisms along with AWS digital technologies to transform the world, industry by industry. We dive deep with leaders and innovators to solve the problems which block their industries, enabling them to capitalize on new digital business models. Simply put, our goal is to use the skill and scale of AWS to make the benefits of a connected world achievable for all businesses. We are looking for an Applied Scientist who are passionate about transforming industries through AI. This is a unique opportunity to not only listen to industry customers but also to develop AI and generative AI expertise in multiple core industries. You will join a team of scientists, product managers and software engineers that builds AI solutions in automotive, manufacturing, healthcare, sustainability/clean energy, and supply chain/operations domains. Leveraging and advancing generative AI technology will be a big part of your charter as we seek to apply the latest advancements in generative AI to industry-specific problems. Key job responsibilities Using your in-depth expertise in machine learning and generative AI, you will deliver reusable science components and services that differentiate our industry products and solve customer problems. You will be the voice of scientific rigor, delivery, and innovation as you work with our segment teams on AI-driven product differentiators. You will conduct and advance research in AI and generative AI within and outside Amazon.
DE, Berlin
The Community Feedback organization powers customer-generated features and insights that help customers use the wisdom of the community to make unregretted shopping decisions. Today our features include Customer Reviews, Content Moderation, and Customer Q&A (Ask), however our mission and charter are broader than these features. We are focused on building a rewarding and engaging experience for contributors to share their feedback, and providing shoppers with trusted insights based on this feedback to inform their shopping decision The Community Data & Science team is looking for a passionate, talented, and inventive Senior Applied Scientist with a background in AI, Gen AI, Machine Learning, and NLP to help build LLM solutions for Community Feedback. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team and are ready to make a lasting impact on the future of AI-powered shopping, we invite you to join us on this exciting journey to reshape shopping. Please visit https://www.amazon.science for more information. Key job responsibilities - As a Senior Applied Scientist, you will work on state-of-the-art technologies that will result in published papers. - However, you will not only theorize about the algorithms but also have the opportunity to implement them and see how they perform in the field. - Our team works on a variety of projects, including state-of-the-art generative AI, LLM fine-tuning, alignment, prompt engineering, and benchmarking solutions. - You will be also mentoring junior scientists on the team. About the team The Community Data & Science team focusses on analyzing, understanding, structuring and presenting customer-generated content (in the form of ratings, text, images and videos) to help customers use the wisdom of the community to make unregretted purchase decisions. We build and own ML models that help with i) shaping the community content corpus both in terms of quantity and quality, ii) extracting insights from the content and iii) presenting the content and insights to shoppers to eventually influence purchase decisions. Today, our ML models support experiences like content solicitation, submission, moderation, ranking, and summarization.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Within Sponsored Products, the Bidding team is responsible for defining and delivering a collection of advertising products around bid controls (dynamic bidding, bid recommendations, etc.) that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, WA, Seattle
Ever wonder how you can keep the world’s largest selection also the world’s safest and legally compliant selection? Then come join a team with the charter to monitor and classify the billions of items in the Amazon catalog to ensure compliance with various legal regulations. The Classification and Policy Platform (CPP) team is looking for Applied Scientists to build technology to automatically monitor the billions of products on the Amazon platform. The software and processes built by this team are a critical component of building a catalog that our customers trust. As an Applied Scientist on the CPP team, you will train LLMs to solve customer problems, distill knowledge into optimized inference artifacts, and collaborate cross-functionally to deliver impactful solutions. This role offers the opportunity to push the boundaries of LLM capabilities and drive tangible value for our customers. The ideal candidate should possess exceptional technical skills, a startup-driven mindset, outstanding communication abilities to join our dynamic team. We believe that innovation is key to being the most customer-centric company. We innovate, publish, teach, and set strategy, while using Amazon's "working backwards" method to serve our customers.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun. Amazon Robotics is seeking students to join us for a 5-6 month internship (full-time, 40 hours per week) as Data Science Co-op. Please note that by applying to this role you would be considered for Data Scientist spring co-op and fall co-op roles on various Amazon Robotics teams. The internship/co-op project(s) and location are determined by the team the student will be working on. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics About the team Amazon empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.
US, CA, Santa Clara
Come join the AWS AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. We are located in the USA (Seattle, Pasadena, Bay Area). About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, NY, New York
Want to work on one of the highest priorities across Amazon Ads? This is your chance to help build a billion dollar business, innovate on a new product space, and have a positive impact on millions of views while working with industry-leading technologies. The Ad Catalyst team in Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital advertising solutions to over a million advertisers with the goal of helping our our hundreds of millions customers find and discover anything they want to buy. We start with the customer and work backwards in everything we do, including advertising. Our team owns researching, evaluating, ranking and serving personalized recommendation to each of our 1+ million advertisers using state of the art machine learning techniques ( e.g., deep learning, deep-reinforcement learning, causal modeling). Our team is placed centrally in the Advertising Experience organization which owns the advertising console, this provides us full-stack ownership giving scientists the satisfaction of seeing their work directly power advertiser experiences with measurable outcomes. If you’re interested in joining a rapidly growing team working to build a unique, highly respected advertising group with a relentless focus on the customer, you’ve come to the right place. This is a unique opportunity to get in early and drive significant portions of the technical roadmap and shape the research agenda of a billion+ dollar business. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment through both strong personal delivery and the ability to develop partnerships with science teams across the org. This is a high visibility leadership position where you will be the first principal scientist in a 400+ people org. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities - Be a thought leader and forward thinker, anticipating obstacles to success, helping avoid common failure modes, and holding us to a high standard of technical rigor and excellence in machine learning (ML). - Own and drive the most complex and strategic solutions across the business; responsible for many millions in revenue. - Own the dialogue with partner science teams - shape consensus in scientific research roadmap, modeling approaches evaluation and presentation of the science driven results to our advertisers. - Define evaluation methods and metrics that measure the effectiveness of advertising recommendations using a variety of science techniques (Randomized Control Trials, Causal Modeling, Reinforcement learning policy evaluation) - Research, build, and deploy innovative ML solutions; working across all technical disciplines. - Identify untapped, high-risk technical and scientific directions, and stimulate new research directions that you will deliver on. - Be responsible for communicating our ML innovations to the broader internal & external scientific communities. - Hire, mentor, and guide senior scientists. - Partner with engineering leaders to build efficient and scalable solutions. We are open to hiring candidates to work out of one of the following locations: New York, Seattle
US, CA, Santa Clara
AWS AI is looking for passionate, talented, and inventive Research Scientists with a strong machine learning background to help build industry-leading Conversational AI Systems. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Understanding (NLU), Dialog Systems including Generative AI with Large Language Models (LLMs) and Applied Machine Learning (ML). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use language technology. You will gain hands on experience with Amazon’s heterogeneous text, structured data sources, and large-scale computing resources to accelerate advances in language understanding. We are hiring in all areas of human language technology: NLU, Dialog Management, Conversational AI, LLMs and Generative AI. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! We are seeking a highly accomplished and visionary Data Science professional to join our team, leading our data science strategy for the Media Planning Science program. In this role, you will collaborate closely with business leaders, stakeholders, and cross-functional teams to drive the success of the program through data-driven solutions. You will be responsible for shaping the data science roadmap fostering a culture of data-driven decision-making, and delivering significant business impact through advanced analytics and cutting-edge data science methodologies. Key job responsibilities As a Data Scientist on this team, you will: 1. Develop and drive the data science strategy for the Media Planning Science program, aligning it with the program's objectives and overall business goals. 2. Identify high-impact opportunities within the program and lead the ideation, planning, and execution of data science initiatives to address them. 3. Solve real-world problems by getting and analyzing large amounts of data, diving deep to identify business insights and opportunities, design simulations and experiments, developing statistical and ML models by tailoring to business needs, and collaborating with Scientists, Engineers, BIE's, and Product Managers. 4. Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data 5. Apply statistical and machine learning knowledge to specific business problems and data. 6. Build decision-making models and propose solution for the business problem you define. 7. Formalize assumptions about how our systems are expected to work, create statistical definition of the outlier, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. 8. Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team The Media Planning Science team builds and deploys models that provide insights and recommendations for media planning. Our mission is to assist advertisers in activating plans that align with their goals. Our insights and recommendations leverage heuristic and machine learning models to simplify the complex tasks of forecasting, outcome prediction, budget planning, optimized audience selection and measurements for media planners. We integrate our insights into user interfaces and programmatic integrations via APIs, ensuring reliable data, timely delivery, and optimal advertising outcomes for our advertisers.