Skip to main content

Stochastic Realization Theory

  • Chapter
Mathematical System Theory

Abstract

The use of state-space models for modelling and processing of random signals was introduced by Kalman at the very beginning of the history of System Theory. Although spectacular successes have emerged from the introduction of these models (Kalman filtering to name just one), until quite recently there has not been any serious effort of putting together in a logically consistent way a theory of modelling and model representation in the stochastic frame. Expanding applications to diverse fields like Econometrics etc. and a multitude of nonstandard estimation problems arising in engineering applications seem now to render the need for such a theory more urgent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 15.99
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akaike H. (1975) Markovian representation of stochastic processes by means of canonical variables, SIAM J Control, 13, pp 165–173

    Article  MathSciNet  Google Scholar 

  2. Anderson B.D.O. (1969) The inverse problem of stationary covariance generation, J Stat Phys 1, pp 133–147

    Article  Google Scholar 

  3. Cramer H. (1960) On some Classes of Non-Stationary Stochastic Processes, Proc IV Berkeley Symp Statistic and Appl Probability II, pp 57–78

    Google Scholar 

  4. Doob J.L. (1953) Stochastic Processes,Wiley

    Google Scholar 

  5. Ephremides T., Thomas J. (1973) Random Processes, Multiplicity Theory and Canonical Decompositions,Dowden Hutchinson & Ross

    Google Scholar 

  6. Faurre P. (1973) Realisations Markoviennes de processus aleatoires stationnaires, INRIA Report n 13, INRIA, Le Chesnay

    Google Scholar 

  7. Kalman R.E. (1965) Linear stochastic filtering: reappraisal and outlook, Proc Symp System Theory, Polytechnic Inst of Brooklyn, pp 197–205

    Google Scholar 

  8. Kalman R.E. (1982) Identification from real data, in Current Developements in the Interface: Economics, Econometrics and Mathematics ( M. Hazewinkel and A.H.G. Rinrooy Kan eds), Reidel, Dordrecht, pp 161–196

    Chapter  Google Scholar 

  9. Kalman R.E. (1982) System Identification from Noisy Data, in Dynamical Systems II ( A.R. Bednarek and L. Cesari eds ), Academic Press, pp 135–164

    Google Scholar 

  10. Lewis J.T., Thomas L.C. (1974) How to make a Heat Bath, in Functional Integration ( A.M. Arthurs ed), Clarendon Press, Oxford, pp 97 – 123

    Google Scholar 

  11. Lewis J.T., Maassen H. 1984. Hamiltonian models of classical and quantum stochastic processes. Quantum Probability and Applications ( A. Frigerio and V. Gorini eds), Springer L.N. in Mathematics, 1055, Springer Verlag

    Google Scholar 

  12. Lindquist A., Picci G. (1979) On the Stochastic Realization Problem, SIAM J Control Optimiz, 17, pp 365–369

    Article  MathSciNet  MATH  Google Scholar 

  13. Lindquist A., Picci G. (1985) Realization Theory for multivariate stationary Gaussian processes, SIAM J Control Optimiz, 23, pp 809–857

    Article  MathSciNet  MATH  Google Scholar 

  14. Lindquist A., Picci G. (1990) A geometric approach to modeling and estimation of linear stochastic systems—to appear in Journal of Math Systems Estimation and Control

    Google Scholar 

  15. Laub A. et al. (1988) MATLAB Control System Toolbox,The Math Works Inc

    Google Scholar 

  16. Picci G. (1976) Stochastic realization of Gaussian processes, Proc IEEE 64, pp 112 – 122

    Article  MathSciNet  Google Scholar 

  17. Picci G. (1986) Applications of Stochastic Realization Theory to a Fundamental Problem of Statistical Physics, Modelling Identification and Robust Control (C. I. Byrnes and A. Lindquist eds ), North Holland

    Google Scholar 

  18. Picci G., Pinzoni S. (1986) Dynamic Factor-Analysis Models for Stationary Processes IMA J Math Control Appl3, pp 185–210

    Google Scholar 

  19. Picci G. (1989) Parametrization of Factor-Analysis Models, Journal of Econometrics, 41, pp 17 – 38

    Article  MathSciNet  MATH  Google Scholar 

  20. Picci G. (1989) Aggregation of Linear Systems in a completely Deterministic Framework, in Three Decades of Mathematical System Theory (H. Neijmeier and J.M. Schumacher eds), Springer Verlag Lect Notes in Control and Information Sciences, 35, pp 358–381

    Google Scholar 

  21. Rozanov Y.A. (1967) Stationary Random Process,Holden Days

    Google Scholar 

  22. Ruckebusch G. (1976) Representations Markoviennes de processus gaussiens stationnaires. CR Acad Sci Paris Series A282, pp 649–651

    Google Scholar 

  23. Ruckebusch G. (1980) Theorie geometrique de la representation Markovienne. Ann Inst Henri Poincare’ XVI3, pp 225–297

    Google Scholar 

  24. Taylor J.S.T., Pavon M. (1987) On the Nonlinear Stochastic Realization Problem Stochastics 26, pp 65–79

    Google Scholar 

  25. Van Schuppen J.H. (1986) Stochastic Realization Problems Motivated by Econometric Modeling, in Modelling, Identification and Robust Control (C. I. Byrnes and A. Lindquist eds ), North Holland, pp 259 – 276

    Google Scholar 

  26. Willems J.C. (1979) System Theoretic Models for the analysis of physical systems Ricerche di Automatica10, pp 71–104

    Google Scholar 

  27. Willems J.C. (1983) Input–output and state–space representations of finite-dimensional linear time-invariant systems. Lin Alg Appl, 50, pp 581–608

    Article  MathSciNet  MATH  Google Scholar 

  28. Willems J.C. (1986) From time series of linear systems. Part I. Finite Dimensional Linear Time Invariant Systems, Automatica, 22, pp 561–580

    Article  MathSciNet  MATH  Google Scholar 

  29. Willems J.C. (1989) Models for Dynamics Dynamics Reported, vol. 2, pp 171–269

    Google Scholar 

  30. Wold H. (1938) A Study in the Analysis of Stationary Time Series, Almqvist & Wiksells, Uppsala

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picci, G. (1991). Stochastic Realization Theory. In: Antoulas, A.C. (eds) Mathematical System Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08546-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08546-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08548-6

  • Online ISBN: 978-3-662-08546-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics